Almost sure asymptotics for the random binary search tree

نویسنده

  • Matthew I. Roberts
چکیده

Consider the complete rooted binary tree T. We construct a sequence Tn, n = 1, 2, . . . of subtrees of T recursively as follows. T1 consists only of the root. Given Tn, we choose a leaf u uniformly at random from the set of all leaves of Tn and add its two children to the tree to create Tn+1. Thus Tn+1 consists of Tn and the children u1, u2 of u, and contains in total 2n+ 1 nodes, including n+ 1 leaves. We call this sequence of trees (Tn)n≥1 the binary search tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Width and Mode of the Profile for Some Random Trees of Logarithmic Height by Luc Devroye

We propose a new, direct, correlation-free approach based on central moments of profiles to the asymptotics of width (size of the most abundant level) in some random trees of logarithmic height. The approach is simple but gives precise estimates for expected width, central moments of the width, and almost sure convergence. It is widely applicable to random trees of logarithmic height, including...

متن کامل

Refined quicksort asymptotics

The complexity of the Quicksort algorithm is usually measured by the number of key comparisons used during its execution. When operating on a list of n data, permuted uniformly at random, the appropriately normalized complexity Yn is known to converge almost surely to a non-degenerate random limit Y. This assumes a natural embedding of all Yn on one probability space, e.g., via random binary se...

متن کامل

Random trees for analysis of algorithms

2 Binary search trees 2 2.1 Definition of a binary search tree . . . . . . . . . . . . . . . . . . 2 2.2 Profile. Discrete martingale . . . . . . . . . . . . . . . . . . . . . 3 2.3 Embedding in continuous time. Yule tree . . . . . . . . . . . . . . 4 2.4 Martingale connection Yule tree binary search tree . . . . . . . . 5 2.5 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Random trees and Probability

2 Binary search trees 2 2.1 Definition of a binary search tree . . . . . . . . . . . . . . . . . . 2 2.2 Profile of a binary search tree . . . . . . . . . . . . . . . . . . . . 3 2.2.1 Level polynomial. BST martingale . . . . . . . . . . . . . 3 2.2.2 Embedding in continuous time. Yule tree . . . . . . . . . . 6 2.2.3 Connection Yule tree binary search tree . . . . . . . . . . 7 2.2.4 Asymptoti...

متن کامل

Width and Mode of the Profile for Random Trees of Logarithmic Height1

We propose a new, direct, correlation-free approach based on central moments of profiles to the asymptotics of width (size of the most abundant level) in random trees of logarithmic height. The approach is simple but gives very precise estimates for expected width, central moments of the width, and almost sure convergence. It is widely applicable to random trees of logarithmic height, including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010